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Abstract 
Intelligent behavior for robotic agents requires a careful 
balance of fast reactions and deliberate consideration of 
long-term ramifications.  The need for this balance is 
particularly acute in space applications, where hostile 
environments demand fast reactions, and remote locations 
dictate careful management of consumables that cannot be 
replenished.  However, fast reactions typically require 
procedural representations with limited scope and handling 
long-term considerations in a general fashion is often 
computationally expensive.   

In this paper, we describe three major areas for 
autonomous systems for space exploration: free-flying 
spacecraft, planetary rovers, and ground communications 
stations.  In each of these broad applications areas, we 
identify operational considerations requiring rapid response 
and considerations of long-term ramifications.  We describe 
these issues in the context of ongoing efforts to deploy 
autonomous systems using planning and task execution 
systems. 

1 Introduction 
Recently, technologies for autonomous systems have made 
considerable progress.  Low-level behavior control and 
motion, sensing, mode identification and diagnosis, task 
execution and control, and automated planning and resource 
management technologies  have all made dramatic advances 
in both the type and size of problems that can be solved.  
These advances create the potential for robotic systems with 
the ability to operate autonomously.  
 However, robotic systems present unusual challenges in 
that they require the tight integration of multiple 
technologies with all of the stresses associated with a real 
environment (e.g., hardware unreliability, hard timing 
constraints, sensing uncertainty/error, etc.).  This is what 
makes robotic systems the most powerful demonstration of 
intelligent agency. 
 The principal contributions of this paper are to: 1) 
identify aspects of autonomy required for autonomous 
systems, 2) clarify the challenges, and 3) provide examples 
of domains for which autonomy is useful. We believe that 
all of these aspects must be recognized and dealt with 
effectively to attain high levels of autonomy.  In our 
discussions, we will focus on the balance between reaction 
and deliberation, and between planning and execution, 

particularly as they relate to declarative and procedural 
representations.  Specifically, we will talk about examples 
of these systems in the context of three NASA robotic 
applications: free-flying robotic spacecraft, ground 
communications stations and planetary rovers.   
 The re mainder of this paper is organized as follows.  
First, we define what we mean by autonomy, procedural, 
declarative, deliberation, and reaction.  We then describe a 
generic architecture for planning and execution.  Next, we 
describe how this architecture is  used to tightly couple 
procedural and model-based reasoning as well as 
deliberation and reaction.  We describe these concepts in 
the context of three NASA robotic applications.  Finally we 
describe approaches to the problem along with considerable 
previous work in the area.   

2 Issues in Planning and Execution 
We define autonomy as the ability of a system to handle 
complex tasks involving environmental feedback without 
external intervention or supervision.  Examples include the 
operation of free-flying robotic spacecraft for mapping and 
science observation missions, the operation of surface 
rovers on extra -terrestrial missions, and the tracking of 
spacecraft using ground communications stations.  While 
there are many aspects of autonomy, we focus on issues 
arising from automated planning and scheduling in the 
context of real-time task execution. Aspects of autonomy 
we explore include system plan and task representation, 
system control, plan generation, plan execution, monitoring, 
and error handling. 

2.1 Knowledge Representation 
A complete autonomous system consists of hardware, 
software (engines) and models.  For the purposes of this 
paper, we will focus on software and models.  Software and 
models may be defined either declaratively or procedurally. 
Software 1 (e.g., a planning engine or task execution engine) 
is the control information necessary to use the information 
provided by models. A model is the knowledge about a 
domain or situation.  
 Procedural models represent domain knowledge by 
embedding it in a control stream.  This is sometimes 
referred to as “arbitrary code.” It is often quite difficult to 

                                                                 
1 We will assume all software is represented procedurally, 
although there are exceptions, e.g. Prolog. 
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separate the control information from the domain 
information in procedural models.  Declarative models are 
static representations about events, objects, and their 
relationships. The software required to use a declarative 
model may be quite complex; this is the topic of 
considerable Artificial Intelligence research. 
 The tradeoff between procedural models and declarative 
models is that while procedural models can be quickly 
encoded for specific domains, conventional wisdom is that 
(compared to declarative models) procedural models are 
brittle and difficult to change. Declarative models do not 
commit to any particular control path, and thus in theory 
can be more flexible with respect to uncertain and unknown 
events.  However, the software that uses these models can 
be slow and often requires more computational resources 
than software using procedural models. 

2.2 Plan Generation and Execution 
Plan (and/or schedule) generation is the act of devising a set 
of actions (the plan) to realize a task or set of goals. In order 
to realize a task or achieve a goal, a system may use 
deliberation and/or reaction.  Deliberation is the process of 
producing a collection of executable sub-tasks that when 
executed result in the realization of a task/goals. This 
collection of executable sub-tasks is referred to as a plan. 
Deliberation is the search required to find an appropriate 
plan and typically cannot guarantee finding a solution.   

Reaction is the act of producing the next executable 
sub-task required to achieve a task. Therefore, reactive 
systems generate a plan one step at a time, only generating 
the next step in the plan and waiting for the results before 
continuing. Reaction performs little or no search, and thus 
is able to provide a bounded time response. Reaction is a 
very powerful technique that deals well with real-time 
issues.  However, reaction has the weakness that it may take 
harmful actions that result in suboptimal performance or 
even unnecessary failure because it does not perform look-
ahead.  Even though it makes its decisions locally without 
look-ahead, reaction still has many powerful capabilities 
such as the ability to respond to execution errors in a timely 
fashion through generic error handlers and task trees as well 
as the ability to synchronize multiple execution threads.  
 The tradeoff between deliberation and reaction is that 
deliberation may require more resources (time and 
computation) than reaction, resulting in missed deadlines. 
Reaction may waste resources trying to achieve a task, and 
might not solve the problems associated with achieving a 
task at all. Further deliberation allows for plan optimization, 
and the ability to solve the problem within the global 
context of the robotic system and/or mission desires.  We 
see the use of both techniques to achieve robust autonomy. 

Plan execution is the act of realizing a task given a plan. 
Technologies used for plan execution include (among 
others) execution software and mode identification. 
Execution software takes the representation of a plan and 
controls the hardware such that the tasks in the plan are 

achieved. Mode identification is the act of using sensor 
information and plan context to determine the state of the 
environment and the state of the autonomous system. The 
combination of execution software and mode identification 
allows plan execution to achieve tasks of a plan and to 
know that the tasks have been achieved. Likewise, failure to 
achieve a state can be known and reported back to the plan 
generation system. Reactive plan generation immediately 
provides a new task (probably very similar to the failed 
task) to be executed. If plan generation is deliberative, a 
new plan or revised plan is produced. 

We believe that declarative and procedural 
representations of models as well as deliberative and 
reactive plan generation are required for intelligent robotic 
systems. 

2.3 Architectural Approaches 
A common approach to designing robotic automation 
control software is to utilize a three-tier architecture (Gat 
1998) to combine different components of the system.  This 
framework provides a template for interfacing components 
that operate at different levels of abstraction and provide 
varying time responsiveness.  A three-tier architecture is 
typically comprised of a deliberator (planner) tier, a task 
executor (sequencer) tier, and a skills/controller tier.  

These tiers are usually organized by the level of 
abstraction in which they operate.  The deliberator 
generally produces high-level plans using AI planning 
techniques, which are typically computationally intensive 
algorithms.  Thus, this tier can take a significant amount of 
time to respond to new updates or changes (on the order of 
minutes to several hours).    Domain knowledge for this tier 
is usually encoded using a declarative model, where it can 
be easily utilized by different search techniques. 

The executor (or sequencer) is responsible for the 
execution of the plans produced by the deliberator.  This 
execution often involves further expansion of scheduled 
activities based on execution context (both state and task 
context).  The executor is also responsible for monitoring 
activities and conditions as execution proceeds and handles 
exceptions as they arise.  This tier must quickly react to 
situations, so its behavior is typically much more 
responsive than that of the deliberator (typically responding 
on the order of seconds or even tenths of seconds).   
Domain knowledge at this tier is usually represented using 
procedural constructs, which easily encode the desired 
behavior (e.g., looping, conditionals).  In most three-tier 
architectures, the executor tier drives the overall system by 
not only dispatching commands to the controller tier but 
also by requesting new plans from the deliberator at the 
appropriate times. 

The controller consists of software controllers that 
directly command the hardware.  Each task scheduled by 
the executor typically corresponds to a primitive behavior 
defined in the controller tier for direct execution on the 
hardware.  
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3 Domains  

3.1 Free-flying robotic spacecraft  

One prominent domain in space exploration that requires 
autonomy is free-flying robotic spacecraft (Figure 1). A 
free-flying spacecraft remains in space until it is turned off 
or de-orbited. There are several aspects of operating such a 
spacecraft (autonomous or otherwise). These include power 
management, attitude control, navigation, communications, 
and science instrument operation. Most of these systems are 
already highly automated. For example, the attitude control 
system (ACS2) can be expected to manage pointing the 
spacecraft given an orientation.  

In general, to increase the level of autonomy of free-
flying spacecraft, we focus on 1) recognizing and 
responding to opportunities, and 2) responding to 
unforeseen problems. In this context, we will highlight the 
roles of reactive/deliberative plan generation, plan 
execution, and procedural/declarative model represen-
tations. It is important to note that the responsiveness of the 
system relies on three factors: 1) how quickly (and well) the 
mode can be identified, 2) how quickly (and well) a plan 
can be generated, and 3) how quickly (and well) the plan 
can be executed. Our overall goal is to make spacecraft as 
responsive as possible for as many different situations as 
possible. 

We define nominal operations as spacecraft operations 
with no unforeseen problems and no unforeseen 
opportunities. Although they are highly automated, even 
nominal operations can require sophisticated projection and 
mode identification systems. Interactions between the 
various systems can lead to complex forecasting issues. For 
example, commanding the ACS to point a science 
instrument at a star might require power, which in turn 
results in commanding the ACS to point the solar arrays at 
the sun. But, if the system always remains in a nominal 
operating scenario, then we can pre-compile our plans and 
send them along with the spacecraft. 

Continuous nominal operations rarely occur. One reason 
is that often our goal in flying such spacecraft is to achieve 
as much science as possible. If we could predict the science, 
we would have little need to fly most of our spacecraft. 
Scientific opportunities are often discovered based on the 
information obtained by the instruments. Historically, 
information is analyzed on the ground and then new science 
goals are sent to the spacecraft to capitalize on these 
opportunities. If light travel time is large or there is a 
communications bottleneck, this can lead to lost 
opportunities. 

                                                                 
2 For our discussion we will assume the use of propellant 
and thrusters to change or maintain the orientation of the 
spacecraft. Propellant fuels thrusters (through burning or 
release under pressure) and provides the mass to push 
against so that the spacecraft can maneuver in a vacuum. 

Another reason continuous nominal operations rarely 
occur is that the environment and spacecraft hardware can 
be unpredictable. During off-nominal operations (where 
unforeseen events occur) spacecraft often do not have the 
technology to characterize the situation and respond 
accordingly. For current missions off-nominal operations 
often lead to the spacecraft going into a safe mode that 
ensures communications and hardware operability. The 
spacecraft then waits for operators on the ground to respond 
and direct it accordingly. Again, if light travel time is large 
or there is a communications bottleneck, this can lead to 
lost science due to waiting. Even worse, if there is no truly 
safe configuration that can be pre-packaged and carried 
along, then the spacecraft might be lost. For example, 
because of the time critical nature of orbit insertion, no safe 
mode exists. 
 Opportunities manifest themselves in a number of ways. 
We focus on 1) extra resource availability and 2) new 
science opportunities. Extra resource availability occurs 
when fewer resources were consumed during nominal 
operations. For example, the ACS system might have used 
less propellant than previously projected. The mode 
identification system must be sophisticated enough to 
realize that extra resources are available. This can be as 
simple as taking a measurement, e.g., identifying that extra 
propellant is available. On the other hand, identifying that 
extra time is available before re-entry can be a complex 
combination of measurements and computations. Both of 
these examples are traditionally modeled procedurally. A 
more difficult task is identifying interesting scientific 
events. Vision systems capable of performing such tasks 
require large amounts of computational resources. Once the 
opportunity is identified, a new plan must be generated. If a 
few simple steps are required that do not contend with other 
on-going tasks, then the system can reactively generate a 

 
 

Figure 1: Europa Orbiter 
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plan that takes advantage of the opportunity. On the other 
hand, most systems and operations interact, and the 
ramifications of actions on the system as a whole must be 
considered. If there are many interactions and many options 
for achieving goals, then it might be difficult or impossible 
to respond reactively. Deliberation provides a plan under 
these circumstances. 
 Unforeseen problems manifest themselves in a number 
of ways, as well. We focus on 1) resource over-utilization, 
2) failed tasks, and 3) hardware or subsystem failure. 
Resource over-utilization occurs when a task requires more 
resources than expected operations. For example, the ACS 
system might have used more propellant than previously 
projected. Again, the mode identification system must be 
sophisticated enough to know that extra resources were 
used. Depending on the complexity of the projection, this 
may be nearly instantaneous or take a considerable amount 
of time and resources. Once identified, a new or modified 
plan must be generated that achieves the assigned tasks (or 
removes lower priority tasks). Failed tasks are similar in  
nature to over-subscriptions. The task must be identified as 
having failed and a new or modified plan must be generated 
that achieves the failed task. Hardware or subsystem failure 
identification is challenging. Often, hardware and 
subsystems fail in unpredicted ways. Mode identification 
under these circumstances includes sensor data, statistical 
inference, and model modification. Failure of a system can 
degrade operations (e.g., failure of a bi-directional filter 
wheel to turn counter-clockwise), or preclude them 
operating all together (e.g., failure of a communications 
antenna). Ideally, mode identification would characterize 
the changes required to the various models, but currently 
most models that handle system failure do so explicitly. 

3.2 Deep Space Communication   

Another domain area that benefits from autonomy software 
is NASA’s Deep Space Network (DSN).  The DSN (DSN 
94) is the most sensitive scientific telecommunications and 
radio navigation network in the world (Figure 2).  The 
purpose of the DSN is to support robotic interplanetary 
spacecraft missions and support radio and radar astronomy 
observations in the exploration of the solar system and the 
universe.  The functions of the DSN are to receive 
telemetry signals from spacecraft, transmit commands that 
control the spacecraft operating modes, and generate the 
radio navigation data used to locate and guide the 
spacecraft to its destination. In addition, the DSN also 
collects flight radio science, radio and radar astronomy, 
very long baseline interferometry, and geo-dynamics 
measurements. 

Current manual operations of the DSN (under nominal 
conditions) involves the issuing of hundreds (~700) of 
command directives whose selection, format, 
parameterization, and sequencing are dependent on the 
class of communication service being performed (>100 
possible combinations), the instance of the equipment set, 

and type of the sub-systems used to fulfill the service (>400 
combinations).  For instance, different versions of a same 
subsystem will have variations on its command sets and on 
the format, type, and number of parameters.  An example of 
how equipment assignments result in changes to the 
command sequence is the utilization of the 34-Meter Beam 
Wave Guide (BWG) antenna. This requires a different type 
of antenna controller than if a 34M High Efficiency (HEF) 
or 70M antenna is assigned to the service.  The resultant 
antenna controller dictates both the command set (i.e., 
available commands and format) and the operations 
procedure (i.e., the necessary steps to configure and 
command) for that station. Planning and execution 
technology can be used to autonomously generate these 
antenna-command sequences and to handle the resolution 
of the above stated interactions. 

For nominal operations, a DSN ground station 
command sequence provides the following services: uplink 
of spacecraft commands, downlink of telemetry 3 data and 
science data, handling of bit rate changes (speed of data 
transmission), ranging (method used to determine exact 
spacecraft location), and a number of others services. 

The first step in the process is to configure all of the 
appropriate subsystems, taking into account any inter-
dependencies. Using a declarative representation an 
autonomous system can reason in a general fashion about 
such interdependencies. An example of such a dependency 
is that configuring the receiver (RCV) requires loading of 
configuration tables and ensuring that the data path from 

                                                                 
3 Telemetry data refers to spacecraft engineering and health 
data representing the state of the spacecraft in conjunction 
with subsystem commands and responses. 

 
 

Figure 2: 70-Meter Deep Space  
Communication Antenna 
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the horn to the appropriate low noise amplifier is 
established.  Another example is that the routing of the 
signal path is managed by the microwave controller 
subsystem (UWC), resulting in the ordering constraint that 
the UWC be configured prior to the RCV. 

Due to the nature of the complex communication 
process carried out by the DSN it is not uncommon for 
failures to occur.  This results in the need for recovery steps 
to be carried out quickly.  In an autonomous system, 
failures are typically handled in a reactive manner. In the 
case of equipment failure, a simple set of local changes to 
the executing plan can often handle the failure. And in 
some causes, further global reasoning may be required to 
completely recover the plan from a far-reaching failure.  

One example of a failure is the lack of a response from a 
command directive due to general unreliability in the DSN 
subsystems. In this case, it is often appropriate to resend the 
command, which is a step easily added through a reactive 
executive. The reason behind a retry is that it is not 
uncommon for the communication to the subsystems or 
internal to the subsystems to be temporarily interrupted.  If 
the retry does not result in the desired effect, then it is 
possible that the subsystem will require resetting.  In this 
case the appropriate behavior is for the subsystem to be 
immediately reset.  This in turn would result in the 
subsystem not being configured, requiring the selection of 
the appropriate reconfiguration steps for that subsystem. 
This may result in reconfiguring other subsystems as well. 
Since this has global effects on the state of the system, it is 
usually resolved through deliberation. 

An autonomous system is expected to respond to 
unexpected changes in system state or the required service 
request. For example, if an analysis of telemetry data 
indicates that the spacecraft is in safe mode, an autonomous 
system must respond immediately to the resulting change in 
service request.  In this event the communications station 
must be able to alter its planned sequence of activities to 
accommodate the new/modified request. As a specific 
example, Mars Global Surveyor (MGS) entered safe mode 
in response to anomalies on the spacecraft.  This occurrence 
first resulted in deviations (lower bit-rates) to the original 
spacecraft communications plan and subsequently resulted 
in the mission changing (in real-t ime) the request for 
service in an attempt to diagnose the cause of the onboard 
troubles.  This sort of scenario further emphasizes the need 
for an autonomous system to provide the flexibility to 
receive new goals and to rapidly replan accordingly. A 
similar scenario is if a station is preempted it must be able 
to switch to providing service in a rapid fashion.  

Another requirement on the part of the autonomous 
system is the overlapping of one communication pass with 
another to take advantage the setup/configuration steps.  In 
the current paradigm of operations, each communication 
pass (i.e., service provided to a single mission), is treated as 
an isolated event consisting of: 1) a setup phase referred to 
as pre-track, 2) the service phase referred to as in-track, and 

3) a shutdown/cleanup phase referred to as post-track.  The 
pre-track configures the station for service from a fixed 
start state, and post-track returns the station to that same 
start state.  In the manual operations of the station, the pre-
track phase can take as long as 45 minutes to execute and 
the post track phase can take as long as 15 minutes to 
execute.  Study of the problem has shown that much of this 
pre-track time could be eliminated by overlapping services 
from one mission to another enabling the system to utilize 
steps already taken by a previous communication pass.  
This could result in a reduction of as much as 10-50% 
overhead and enable increased utilization of the network. 
To take advantage of this synergistic interaction between 
the individual elements of the plan, the autonomous 
planning and execution system must reason at a global 
level. 

3.3 Planetary Rovers 

Autonomy not only benefits but also enables the task of 
coordinating rovers for in-situ planetary science (Figure 3).  
Several future missions are being planned to send robotic 
vehicles to Mars.  In order to provide a high-rate of science 
return and to enable rovers to travel long distances, these 
missions will require highly autonomous rovers that require 
little communication with scientists and engineers on earth 
to perform their tasks.  An autonomous rover should be able 
to make decisions about how to best achieve science goals 
as well as be able to react to its environment and handle 
unforeseen events while achieving these goals. 

Future rovers for these missions must respond in a 
timely fashion to a dynamic and unpredictable environment.  
Rover plans must often be modified in the case of fortuitous 
events (such as science observations completing early) and 
setbacks (such as  traverses taking longer than expected or 
hardware failures).  In addition, many important science 
opportunities may arise suddenly, and plans handling such 
events cannot be created in advance.  These opportunities 
must be handled dynamically, and often be allowed to pre-
empt previously planned science activities.  

Current rover operations are extremely limited and offer 
little space for autonomous activities.  Operations for 
Sojourner were manually planned on the ground on a daily 
basis (Mishkin et al., 1998).  In this mode of operations, the 
rover state at the start of the next day planning horizon was 
pre-determined based on data feedback from the previous 
day’s operation.  The science and engineering operation 
goals were then considered, and a plan for achieving the 
goals would be manually generated (which often took 5 
hours or more to complete).  This plan or sequence was 
then uplinked to the rover for execution onboard with only 
minimal amounts of flexibility.  If an unexpected failure 
occurred, the rover would usually be taken into a safe mode 
by fault protection software and the rover would then wait 
in this state until the ground operations team could respond 
and determine a new plan. Correspondingly, if an 
unexpected fortuitous event occurred, the plan could not be 
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modified to take advantage of the situation. In our 
experience, there are many rover operations situations 
where autonomous software can provide important 
capabilities.  For instance, providing more onboard 
autonomy will allow more science data to be collected and 
even enable new science activities, which would be 
virtually impossible to perform using strictly manual rover-
plan generation.   

One area important for rover operations is the ability to 
apply certain search techniques to periodically order 
science goals and their related traverses in an optimal (or 
high-quality) fashion. Before a rover plan is executed, 
science goals and engineering activities are often scheduled 
so as to reduce power resource usage.  However, if 
something unexpected occurs during plan execution, such 
as an unknown obstacle blocking a pre -planned route, 
science goals may need to be re-ordered. For instance, 
assume that during a traverse a new rock formation (not 
seen in previous terrain imagery) is picked up by the rover’s 
onboard sensors, and this causes the rover to go off-track in 
order to avoid the new obstacle.  An autonomous system 
would recognize that the rover has gone significantly off 
the previously planned route and may re-order the science 
targets based on the rover’s current location.  This re -
ordering often involves a significant amount of search to 
find a new (optimal) path, and the search process must 
consider the entire plan when making its decisions. This 
type of capability can only be performed in a deliberative 
fashion where search techniques can be used to find 
globally optimal solutions.  

Flexibility in domain knowledge representation is 
another useful part of an autonomous rover control system. 
One common procedure for rover missions is to reas on 
about different science goal priorities both before and 
during plan execution.  A rover can only perform a limited 
amount of activities, and the highest priority science targets 
should be scheduled if at all possible.  However, this 
schedule may have to change during execution.  If a long-
range traverse ends up taking much longer than previously 

estimated (possibly due to difficult terrain), later science 
goals may have to be discarded due to the limited amount 
of power onboard.  Ideally, the least important science 
goal(s) should be deleted from the plan so that the more 
important data is still collected.  This type of domain 
knowledge is best represented in a declarative fashion, 
which not only allows for more flexibility during the search 
process, but also enables complex goal relations and 
interdependencies to be represented. Also, similar to the 
above example, deliberative search techniques allow an 
autonomous system to determine the best global strategy 
(e.g., deleting a later science goal by evaluating overall 
resource consumption), where a more reactive strategy 
would only allow very local schedule changes. 

Other rover situations require more reactive behavior. 
Many science opportunities need some sort of immediate 
reaction. For example, if a rover sensor detects a Martian 
dust-devil the rover will need to immediately react in order 
to record the event and take other relevant measurements.   
Even pre-planned science experiments often need reactive 
elements to be executed on the fly (or to fill out a partially 
complete sequence). For instance, a rover may have to use 
current sensor values to determine what exact steps to 
perform during an experiment. If a rover is digging or 
drilling, the depth the rover explores to may be dependent 
on the current soil consistency. Or a rover may have to 
evaluate a rock’s material spectral readings before selecting 
it as a good sample to collect. Furthermore, some 
operations may have to be performed several times before 
they are successful, and the number of retries will not be 
known until the operation is being performed.  For instance, 
a rover may have to try several times before grasping a rock 
successfully. All of these behaviors require reactive 
capabilities where the rover plan can be quickly adapted to 
current information.  In addition, knowledge about these 
behaviors is often best represented in a procedural fashion 
where conditional statements and looping constructs are 
easy to encode.  

Failures or other undesirable situations also require 
reactive behavior.  For instance, if battery voltage suddenly 
drops, an autonomous system should react quickly to such 
an event and gracefully end the current science experiment 
where as much data is retained as possible.  Or if the wheel 
slippage has caused the position estimate uncertainty to 
grow too large, the rover should immediately stop and 
perform a localization activity that would recalculate a 
more accurate position estimate.  All of these behaviors 
require quick-response times and, again, are best encoded 
using procedural constructs. 

4 Summary of Approaches  
There are a number of existing systems that also integrate 
scheduling, planning, control, and execution monitoring.  
We do not attempt to review them all, but focus on some of 
the representative systems. 

 
 

Figure 3: 2003 Mars Exploratory Rover (MER) 
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4.1 Approaches with Strong Executors 
The first class of approaches to autonomy are mainly 
enhanced procedural executor systems, some of which are 
capable of more advanced deliberation than is usually 
credited to executors. Moreover, a few rely on declarative 
models and integrate minor planning or scheduling 
components. 

Brooks’ subsumption architecture (Brooks, 1986) 
introduced the paradigm control algorithms for autonomous 
robots, although it contains no hierarchy of planning, 
scheduling, or control.  This type of architecture has often 
been used for mobile robot navigation, where replanning 
and rescheduling is a more constrained problem than in the 
domains described above. 

TCA/TDL (Simmons 1994, Simmons, Apfelbaum 1998) 
is a stand-alone sequencer/controller that consists of 
distributed modules working with a central control module 
via message passing.  The hierarchy that created schedules 
or plans in TCA operates by setting up a task tree that is 
expanded on the fly during execution, and simultaneously 
monitors feedback from the controller. 

Both SOAR (Laird et al. 1987) and Guardian (Hayes-
Roth, 1995) are general reasoning systems that can be 
adapted to a given task environment.  Guardian does not 
have a hierarchical architecture, but uses a blackboard 
architecture with one module devoted to scheduling, 
planning, and control.  SOAR also collapses all the tiers 
into a single reactive, rule -based mechanism. 

The Spacecraft Commanding Language (SCL) (Buckley, 
1991) is an executor that uses procedural scripting to 
execute scripts in parallel, maintain a global database, 
monitor changes in the database, and notify other 
subsystems of any changes it observes.  It is designed to 
have very fast reaction times for critical spacecraft 
scenarios, and has been used aboard a number of NASA 
spacecraft. 

CIRCA (Musliner et al. 1993) has a three-tiered 
architecture comprised of a planner, scheduler, and an 
executor that interacts with the environment through 
actuators and sensors in a mobile robot navigation domain.  
CIRCA’s scheduling enforces hard real-time constraints, 
but it returns failure if it cannot meet the time constraints.   

ATLANTIS (Gat, 1992) is comprised of a controller that 
acts at the lowest reactive level, a sequencer that is a 
special-purpose operating system based on the RAP system, 
and a deliberator that does planning and world modeling.  
In ATLANTIS, it is the sequencer that does the brunt of the 
work; the deliberator is under the control of the sequencer. 
In fact, the deliberator’s output is merely used as advice by 
the sequencer, and the entire system is able to function 
without the deliberator, if necessary. 

3T (Bonasso et al. 1997) is a three-tiered architecture 
with a planner, sequencer, and a reactive skills module that 
interacts with the environment.  Hierarchical planning 
occurs before sequencing.  The sequencer in 3T is a RAP 
(Firby, 1989) interpreter that encodes all the timing 

information within the RAPs.  In 3T all three of its tiers do 
not need to be used for a given task. 

AuRA (Arkin, 1989, Arkin and Balch, 1997) has three-
tiers:  planning, sequencing, and execution for use in 
mobile robot navigation.  Its sequencer simply traverses a 
FSA expression of a plan, unlike the more powerful 
executives in 3T and ATLANTIS. 

4.2 Formal Planning Approaches 
There are a number of systems that interleave more formal 
planning and execution in partially observable 
environments using graph structures such as MDPs or 
formal first order logic representations.  Many of these 
integrate execution with deliberation in order to actively 
gather information from the environment for the planners to 
generate better plans.   

The RETSINA multiagent system (Paolucci, 2000) uses 
the HITaP planner that interleaves planning and execution 
in order to gather information by querying and tasking other 
agents and the environment.  HITaP uses hierarchical task 
network methods to search for executable plans.  When an 
unknown parameter is required for further decomposition, a 
task that will observe that parameter is executed, and the 
observed results are set in the BeliefDB so that planning 
may continue. 

Alami (Alami 1998) describes a method for interleaving 
planning and execution for coordinating multiple robots.  
The core innovation is the plan merging paradigm that 
allows one robot to use another robot’s current plan to 
coordinate activities and goals with its own. 

Dearden (Dearden 1994) uses Markov Decision 
Processes (MDPs) and associated search algorithms to find 
near optimal plans.  Search and execution are interleaved in 
order to gather information as the search proceeds by 
choosing a best action, executing that action, observing the 
results, and iterating.  Search is performed using an 
envelope that focuses on nodes in the MDP relevant to the 
current problem. 

ASPIRE (Helwig, 1996) interleaves planning and 
execution, using the DRIPS decision-theoretic refinement 
planner based on MDPs to find optimal plans.  The 
execution module translates plan actions into commands to 
a physical device and monitors the progress of the actions.  
The search operates over the abstraction hierarchy in the 
planner for goals and actions.  

Dervish (Nourbakhsh, 1997) interleaves conditional 
planning and execution with incomplete information based 
on simplifying assumptions and then creating a framework 
where incorrect assumptions still avoid unsolvable states. 
Assumptions are for post-conditions of certain activities 
that may not achieve them, and initial conditions and 
percepts that may be inaccurate.  During run time, the 
assumptions are updated based on the accuracy of the 
predictions.  

For XII (Golden, 1996), which is working on an Internet 
Softbot, the decision about whether to execute an activity in 
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the presence of incomplete information is posed as a search 
problem.  The planner itself is an extension of UCPOP, so it 
can handle universal quantification and conditional effects, 
combined with XIIL, which is a language for representing 
sensory actions and information goals.  One drawback of 
representing uncertainty related only to observation and 
execution is that exogenous events are not well accounted 
for and cannot be reasoned about thoroughly. 

The IPEM system (Ambros-Ingerson, 1988) created a 
framework for classical planning for simple execution and 
replanning scenarios.  It would be difficult to extend IPEM 
to complex planning problems, as the system does not 
extend to resources or real time planning, but it provides a 
rich framework from which many later planners could draw 
information and lessons. 

4.3 Approaches using Strong Deliberators 
The final class of approaches to autonomy include systems 
that focus on a powerful deliberator component and have 
been used on large domains. 

DPLAN/NMC (Chien et al 1997) is a three-tiered 
architecture where the deliberator, DPLAN, is an integrated 
HTN and POP style planner that generated abstract antenna 
plans.  The executive and the controller functionality were 
special purpose software developed for human operated 
antenna operations, but were later interfaced with DPLAN 
to perform additional automation. 

DS-T (Estlin et al 1999) also utilized a traditional three-
tier architecture with a batch planning system, ASPEN, and 
an integrated executive/software controller.  The executor 
component comes from a COTS system, EPOCH-2000, that 
uses procedural scripting. 

The Remote Agent Experiment (RAX), which flew on 
Deep Space-1, demonstrated the three tier architecture and 
its ability to autonomously control an active spacecraft 
(Pell, 1997).  The HSTS batch planning system was used 
for the deliberator, and ESL acted as the sequencer.  One 
problem discovered using this architecture involves 
including a batch planner on a reactive system.  The batch 
planner took hours to replan after state and resource updates 
had invalidated the original plan, and the plan was 
regenerated from the original set of inputs.   

CASPER (Chien et al 2000) uses a powerful integrated 
continuous planning and scheduling engine combined with 
a very simple executive.  CASPER is comprised of the soft 
real-time version of the batch planner ASPEN by creating 
time windows for execution, scheduling, and planning.  
Although the time allocated to replanning has been reduced 
from minutes or hours on previous batch systems to 
seconds, many real time systems require even faster 
responses. 

CLEaR (Fisher et al 2000) is a system utilizing the 
CASPER continuous planner in conjunction with TDL in 
order to provide a planning and execution system for closed 
loop commanding.  CLEaR leverages the power of the 
procedural representation in TDL and the declarative 

representation in CASPER.  The deliberative and reactive 
methods operate in parallel at run time to determine how to 
best respond to failures and take advantage of opportunities. 

The CPEF system (Continuous Planning and Execution 
Framework) (Myers 1998), using PRS, AP, and SIPE-2, is a 
similar framework for integrating planning and execution.  
CPEF attempts to cull out key aspects of the world to 
monitor (as is necessary in general open-world domains).  
As in ASPEN, CPEF also uses iterative repair under the 
term “conservative repairs”.  The taxonomy of failure types 
similarly represents action failure and re-expansion of task 
networks using re-decomposition. 

Rogue (Haigh, 1996) uses the Prodigy4.0 planning and 
learning system and a number of lower level tiers (obstacle 
avoidance, navigation, path planning, and task planning) on 
Xavier the robot.  The learning portion of the system maps 
events and execution features to the cost,and creates 
situation-dependent rules.  The system relies on the abilities 
in the planner to handle recovery scenarios and may require 
human interaction, such as in the case of navigation, to tell 
the robot how far off of its estimated position it really is. 

5 Conclusions  
This paper has described issues in balancing deliberation 
and reactivity and in balancing declarative and procedural 
representations for autonomous robotics applications.  We 
have discussed these issues with respect to planning and 
execution in the context of three NASA robotics 
applications: free-flying spacecraft, ground 
communications stations, and planetary rovers for in-situ 
science.  We have also described some of the systems that 
strive to address these issues. By describing some of the 
challenges in these applications, we hope to encourage 
further research in this key area of autonomous systems. 
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